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Abstract. We present molecular dynamical simulations of liquid silicon Usiog the 
tight-binding approximatim for electron-mediated interactions. Several StNCtWd 
and dynamical properties of liquid silicon are calculated and compared with the 
results of ob inifio and classical mol& dynamics. The tight-binding model with 
parameters fitted to bulk crystalline properties is found to be very successful in 
characterizing the liqujd state, which facilitates large-scale d y d c a l  simulations. 

1. In trodnc t ion 

The proper physical description of the properties of liquid silicon (I-Si) is a great 
challenge and is also of substantial practical interest. Silicon melts at an unusually high 
temperature of 1680 K where the transition from a fourfold semiconducting crystal to 
a low-coordinated metallic liquid occurs. Upon melting the density of silicon increases 
by - 10% which indicates a transition to a more compact liquid state. However, the 
coordination number of I-Si (6.5) is much lower than those characteristic of typical 
closed-packed metallic liquids (12-14). Low coordination has been considered to be a 
signature of the existence of covalent bonds in the liquid. Experimentally 1-Si is not 
easy to study due to the high melting temperature. Simple theoretical models also 
fail to describe the bonding characteristics of M i .  

Classical molecular dynamics (MD) has been widely used to study materials a t  
finite temperatures 111. In conventional simulations the force laws between particles 
are determined from empirical potentials that have been fitted to reproduce some 
experimentally observed properties of the system. For closed-shell systems, such as 
rare-gases, a two-body potential may provide an adequate description of the system. 
Nowever, for covalently bonded matter, such as most semiconductors, at  least a thee-  
body term is needed because of the persistence of directional bonds. A proper fitting 
of several parameters is tedious and does not guarantee that the same potential would 
describe the system well in various environments and in different phases [Z-41. It  is also 
difficult to evaluate to what extent the results are biased by the choice of the model 
potential. Stillinger and Weber (SW) constructed a many-body potential for silicon 
which was  fitted to apply to both the liquid and solid phases [2]. The sw potential 
has  been the most exhaustively tested and used model potential for MD simulations 
of solid, liquid and amorphous Si. 

Recently, a first principles approach to MD has become possible. Car and Parrinello 
(CP) extended MD to include electronic effects within the density functional framework 
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[5]. The CP method allows the interatomic forces to be calculated during the simulation 
from the electronic degrees of freedom. Because of the absence of empirical fitting, the 
results are very reliable, and, in principle, no transferability problems exist (on the 
condition of a proper choice of the pseudopotential). Unfortunately these calculations 
are computationally heavy, due to the explicitly included electronic effects, which 
limits the duration of the simulation and the size of the system. The CP method 
has been used, for example, for structural studies of Si clusters [6] and disordered 
Si [7]. Recently, Stich et a1 have successfully applied the CP method to liquid and 
amorphous Si [S, 91. These results serve as a useful reference for testing the validity 
of more approximate methods. 

The high computational cost of the first-principles calculations has motivated a 
simplified but still quantum mechanical approach to MD. In the tightbinding (TB) 
model the electronic effects are treated approximately, leaving the computational cost 
modest compared with the CP simulations. However, the TB model coupled with MD 
[lo] has the advantage over classical potentials that the interatomic interactions are 
determined at the microscopic level so that electronic bonding enters in a natural way. 
As an empirical method, the TB approximation still has to tackle the problem of trans- 
ferability. However, as we argue below, a TB model derived in the bulk environment 
can give very good results from clusters to the liquid state. Goodwin, Skinner and 
Pettifor have developed a modification to the TB model that increases the transfer- 
ability of the parameters from the  bulk [ll]. We will show that their modification, 
quite successful for Si clusters, also works very well in a MD study of liquid Si. To 
evaluate the performance of the method and the parametrization several structural 
and dynamical properties of 1-Si are calculated and the results are compared with 
those of ab inif io  [S, 91 and classical [2, 121 MD simulations. While this paper was 
being written, we became aware of similar recent work by Wang et  al [13], who have 
applied a TB-MD model to defects in bulk Si. Their conclusions are parallel to those 
of ours. 

The rest of the paper is organized as follows: In section 2 we describe the TB 
formalism and parameters suitable for MD simulations of I-Si. In section 3 the results 
of the simulation are given and analysed, and in section 4 we present the conclusions. 

2. The tight-binding approximation 

The tight-binding expression for the total energy is 

The first term describes the quantum mechanical bonding energy obtained as a sum 
of the approximate electronic eigenstates E’. The second term is the classical pair 
potential that depends on the distance R, - R, from atom n to atom m. 

The bonding energy is derived from a simplified description of the Hamiltonian. 
The electronic wavefunction is expanded in terms of a small set of localized and or- 
thogonal basis functions $v 
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The basis functions are usually the occupied or partially occupied atomic orbitals of 
the free atom, e.g. a single s state and three p states for silicon. 

The Hamiltonian matrix is defined as 

(3) 

where H is the single-particle Hamiltonian. Then the Schr6dinger equation reads 

from which one can derive the eigenvectors and the eigenvalues, either through exact 
diagonalization or using some iterative algorithm [lo], and finally the band structure 
energy 

The simplification of the TB scheme can be achieved by considering the matrix 
elements as parameters. Thus the rigorous integrals in (3) are replaced with 
angleand distance-dependent functions fitted to experiment or to first-principles t h e  
ories. For silicon with the minimal basis set offour atomic orbitals this approximation 
produces a parametrized TB matrix the dimensions of which are 4N, where N is the 
number of atoms considered. Low dimensions of the matrix are essential if it is di- 
agonalized a t  each stage. The parameters of the pair potential in (1) are adjusted 
simultaneously with the TB matrix elements. 

In a tight-binding formulation for silicon we use the parametrization reported 
by Harrison [14] with the modification provided by Goodwin et a l  1111. Harrison's 
original TB parametrization was adjusted to reproduce the equilibrium properties of 
the Si diamond structure. Goodwin et a1 rescaled the parameters in order to increase 
transferability to environments that depart from the diamond lattice. They introduced 
a scaling function f that modifies the distance dependence of Harrison's Hamiltonian 
elements H,(1) and the pair potential parameter $(I) 

where I' is the distance between atoms, T~ is the equilibriumnearest-neighbour distance 
of the diamond lattice and 01 denotes the interatomic bonding (ssu, spu, spa, ppa). 
H,(1) and 4(1) refer to parameters for the diamond structure at equilibrium. 

The scaling function f does not affect the fitting to the volume and the energy of 
the diamond at equilibrium but it is used to compensate for Harrison's overestimation 
of bond lengths in other structures. The form off  is a smoothed step function 

where the values of r, and n, define the position and the sharpuess of the step. 
The step is positioned between the first- and the second-nearest neighbours in the 
diamond lattice. The smoothness of the scaling factor is essential in a molecular 



7458 R Virkkunen et a1 

dynamical simulation of a liquid in order to avoid too abrupt changes in the forces 
between atoms that move continuously. Also, truncated parameters are sufficiently 
short-ranged 80 that all the non-zero interactions in the liquid can be calculated. 

The final set of the parameters used is [ll] 

E. = -6.173 eV 

4(1) = 3.4581 

Hso(l) = -1.82 eV 

Hpp.(l) = 3.06 eV 

n = 2  m = 4.54 
rC = 3.6 A 

Ep = 2.122 eV 

ffspo(l) = 1.96 eV 

HppK(l) = -0.87 eV 

n, = 6.46. 

The coefficients H,(l) [14] and the pair potential parameter $(1) were taken from the 
fitting to diamond a t  equilibrium. The state energies E, and E, and the pair-potential 
exponent m were adjusted to  give the hest fit to  the diamond FCC energy difference 
and to the diamond SC energy difference. The parameters of the scaling function n, 
and rc were adjusted to obtain the FCC bulk modulus and the equilibrium volume. 
The angular dependence of the parameters is calculated following Slater and Koster 
1151. 

The scaling method of Goodwin et ai essentially improves the agreement of the 
tight-binding results with ab initio results in structures other than diamond silicon. 
The transferability of the parameters was tested by performing MD simulations of small 
silicon clusters [ll]. Here these parameters are used in a liquid simulation, which is 
another major deviation from the bulk crystalline environment where the fitting was 
done. 

3. Molecular dyiiamics 

The combined TB-MD has been introduced elsewhere [lo], and the relevant dynamical 
equations are not repeated here. The MD simulation of the liquid silicon is performed 
with a 64-atom model system in a cubic cell of a side 10.86 8, which corresponds to the 
experimental density of 2.59 g cm-8. Periodic boundary conditions are imposed in all 
three space dimensions. Based on earlier investigations the use of only the I?-point was 
considered satisfactory [6]. The initial configuration was a random-like state resulting 
from a previous 3 ps long simulation of the system at high temperature. The system 
is then followed at an average temperature of 1740 K for a total time of 10 ps. The 
integration time step is lo-'' s resulting in deviations in the total energy that were 
less than 0.5% of the variations in the potential energy. A fairly large integration time 
step (about 10 times longer than a typical CP step [SI and about the same order as 
that in classical simulations 1121) is possible because of the exact algorithm employed 
to diagonalize the 256 x 256 Hamiltonian matrix. 

The structural properties of 1-Si are characterized by the correlation functions. The 
radial pair correlation function g(r) in figure 1 is proportional to the probability of 
finding an atom at the distance r, on the condition that there is one at the origin. Thus 
the position of the first peak indicates the average distance to the nearest neighbours, 
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Figure 1. Pair correlation function g ( 7 )  of I-Si from TB simulation The radial 
distribution of the b t  nearest neighbours. is centred at - 2.5 A. The first minimum 
ofg(7) is thenearert-neighbour cut-oRdistancer, = 3.3 A. The coordinationnumber 
N = 6.4 is calculated Lom (7). 

and the second peak to the next-nearest neighbours. The disappearance of peaks at 
large distances indicates that  there is no long-range order in the liquid. From figure 1, 
the average nearest-neighbour distance in I-Si is - 2.5 A, which is similar to the CP 
result of - 2.46 %, (81 and to the experimental values of - 2.4-2.5 8, [16, 171. The 
coordination number N is derived by integrating the pair correlation function up to 
the first minimum r,,, 

The coordination number of 6.4 from the function in figure 1, with rm = 3.3 A, is in 
agreement with the theoretical 6.5 from CP calculations [SI and with the experimental 
estimate of 6.4 [16, 171. In classical simulations using the Stillinger-Weber (SW) 
potential the coordination numbers vary substantially (- 8 in [2] and - 4.5 calculated 
from the distribution shown in table 1 based in [12]). 

Table 1. Distribution of local coordinations d(N)(%) in I-Si. Tlie results are h o m  
tight-binding (TB), ob inifio (CP) and classical (SW) simulations. 

2.3 3 -  - 
4 6.4 4.6 29.4 
5 19.5 18.0 47.7 
6 30.8 333 18.5 
7 26.3 30.3 2.1 
8 13.0 13.3 - 
9 3.9 2.7 - 

Further characterization of the structure is given by the fraction of atoms with a 
given coordination number. In table 1 we compare our distribution of local coordina- 
tions with those calculated with the SW model [12] and the CP scheme [9]. Clearly, our 
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TB simulation succeeds in reproducing the CP distribution where sixfold and sevenfold 
coordinations are dominant. 

Figure 2. Bond-angle distribution g3(E,rm) as a function of cos(@) where E is the 
angle between an atom and its two nearest neighbours: full curve, TB simulation; 
dotted curve, 06 mi tm result [SI; chain curie, clarsical MD [IZ]. Bond-angles at 
E Y 60" and E Y lW' are favoured in TB and a b  initio distributions. 

Triplet correlations are represented by the distribution of bond angles q3(B, vm), 
where 0 is an angle between a central atom and two of its neighbours at a distance less 
than r,. Figure 2 shows a comparison between the TB, CP and SW results. The TB and 
CP curves show two maxima at  favourable angles of B - 60' and B - 100' (actually 
8 - 90' in the CP simulation A). The structure of the SW liquid is qualitatively very 
different indicating a single broad maximum close to the tetrahedral angle B - 110' [9, 
121. Thus the bonding properties are more accurately characterized by TB calculations 
with approximate electronic effects than by sw potential with an empirical three-body 
term. 

To study the dynamics of ]-Si the mean-square displacement and the velocity 
autocorrelation function are calculated. The mean-square displacement is derived 
from the displacement of the atom R,(t) in the time period t as 

where s is a set of initial states and the brackets denote an average. We choose the 
states s randomly during the simulation in order to avoid unphysical correlations due 
to sampling at regular intervals. The mean-square displacement for I-Si as an average 
over 64 initial states is shown in figure 3. The atoms have travelled approximately 
6 A in 5 ps so that  during the entire simulation the atoms have moved an average 
distauce which is comparable with the size of the simulation cell. Thus a substantial 
part of the phase space is sampled. From the linear part of the curve one can obtain 
an estimate of the diffusion coefficient D 
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We deduce a diffusion constant D = 1.1 x cm2 8-I at 1740 K. This is smaller 
than the reported CP result D = 2.2 x cm' s-l at 1800 K [8] but close to the sw 
value of D = 0.98 x cm' s-' at  2010 K by Allen and Broughton [MI. Because 
of the temperature depeadence the diffusion values from different simulations are not 
directly comparable. Experimental data for the self-diffusion of Si are not available. 

* IPS1 

Figure 3. Time dependence of the meamsquare displacement RZ(t )  in TB 1-53 calcu- 
lated from (8). The diffusion coefficient D = 1.1 x IO-' cm2 6-l derivation is bared 
on (9). 

The velocity autocorrelation functions Z ( t )  characterize the motion of atoms in 
the liquid. Z(1) is also calculated as an average over the initial states s 

The TB velocity autocorrelation function is compared with the CP result [8] in figure 4. 
The oscillations of the functions indicate some regularity in the velocities, such as 
vibrations due to formation of covalent bonds between pairs of Si atoms. The Z(t) 
of our simulation oscillates more pronouncedly than the CP velocity correlation. The 
negative values indicate a backscatter effect which is absent in the CP simulation. 
Thus backscattering diminishes diffusion in the TB liquid. By Fourier transforming 
the velocity autocorrelation function we obtain the phonon spectrum Z ( w )  

m 
Z(W) = 2 Z(t) cos(&) dt. 

7r 

The spectrum Z(w)  of our simulation is shown in figure 5 together with the CP [8] and 
the sw [E] results. The TB spectrum is intermediate between the CP curve, which 
has a small shoulder close to the optical frequency of covalent Si (- 60 THz), and the 
SW spectrum, which exaggerates the crystalline properties. From the zero limit of the 
phonon spectrum we can determine the diffusion coefficient 

k,T . D = - Iim Z(w).  M U - o  
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Figure 4. Velocily autocorrelation fuiction Z(t)  85 a function of time t from (IO): 
full curve, TB method; dotted -ye, ab inifis simulation. Osdllations indicate the 
existelice of some bonds in 1 3 .  

Figure 5. Phonon spectrum Z(w) as a function of Lequency w baed on (11): ful l  
curve, TB simulation; dotted curve, ab initio method [SI; chain curve, classical MD 
[IZ]. The TB result for the diffusion coeEcient D = 1.3 x cmz is derived 
from (12). 

From (12) we obtain D = 1.3 x cm2 s-l which is larger than the value estimated 
from the mean-square displacement but smaller than the CP result of D - 2.0 x 

Finally, in figure 6 we show the density of the electronic energy eigenvalues N ( E )  
calculated as an average over the entire MD trajectory. The Fermi level is positioned 
at  the origin. Clearly, I-Si shows metallic behaviour which is evident from the absence 
of the gap at the Fermi energy. The density of the Kohn-Sham eigenvalues calculated 
within the CP scheme is also displayed for comparison [8]. Qualitatively, the peaks a t  
the negative energies indicate the presence of s, p and sp-hybridized states in the I-Si. 

cm2 s-l, also derived from (12) [8]. 
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Figure G. Density of the energy eigenvalues N ( E )  as a function of energy E: full 
cwve, TB curve; dotted curve, ab initio result [8]. The absence of the energy gap 
iiidicates that 1-Si is metallic. 

4. Conclusioiis 

By performing molecular dynamical simulations of liquid silicon we have shown that 
the liquid state can be successfully studied within the TB approximation. The validity 
of the model clearly depends on the parameters used. The TB parametrization derived 
by Goodwin et a1 for the bulk environment and tested for clusters has been applied here 
to the other extreme of a liquid state. The properties of the TB liquid silicon, which 
depend sensitively on the short-range correlations, agree well with much more time- 
consuming ab initio results. Thus the simplified approach to the electronic bonding is 
seen to include the essential physics. This provides a means for efficiently simulating 
complex systems over long time sequences. 
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